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ABSTRACT
Many web properties make extensive use of item-based collabora-
tive filtering, which showcases relationships between pairs of items
based on the wisdom of the crowd, for navigational aids and recom-
mendation systems. This paper presents LinkedIn’s collaborative
filtering infrastructure, known as Browsemaps. A key characteristic
of our solution is that rapid development, deployment, and compu-
tation of collaborative filtering is possible for almost any use case
through a simple domain specific language with scaling and other
operational issues handled by the system. As part of this work, we
also present case studies on how this platform is used at LinkedIn in
various recommendation products, as well as lessons learned in the
field over the several years this system has been in production.

1. INTRODUCTION
The proliferation of data and the information-rich user experi-

ences have transformed data mining into a core production use case,
especially in the consumer web space. A typical example is showcas-
ing relationships between pairs of items based on the wisdom of the
crowd, also known as item-to-item collaborative filtering (ICF) [10].
At LinkedIn, the largest online professional social network with over
300 million members, item-to-item collaborative filtering is used for
people, job, company, group, and other entity recommendations and
is a principal component of engagement. That is, for each type of
entity on the site, there exists a navigational aid that allows members
to browse and discover other content, as shown in Figure 1. We call
each of these a browsemap.

Initially designed to showcase co-occurrence in views of other
member’s profiles (a profile browsemap or “People Who Viewed
This Profile Also Viewed”), we grew the browsemap computation
into a generic horizontal piece of relevance infrastructure that can
support any entity with a simple configuration change. This infras-
tructure, the Browsemap platform, enables easy addition of other
navigational content recommendations. Moreover, the availability of
a scalable collaborative filtering primitive also permits easy plug-in
of ICF-based features into other models and products. For example,
the “Companies You May Want to Follow” recommendation prod-
uct, which allows members to follow a company to receive its status
updates, uses the Browsemap platform to compute collaborative
filtering of company follows as part of its recommendation set. In
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essence, browsemaps form a latent graph of co-occurrences between
any entity type on LinkedIn.

Browsemap is a managed platform with mostly shared compo-
nents and some vertical-specific logic. LinkedIn’s frontend frame-
work emits activity events on every page view. A parameterized
pipeline for each entity type uses these events to construct a co-
occurrence matrix with some entity-specific tuning. Browsemaps
are computed offline incrementally in batch on Hadoop [15], loaded
into an online key-value store [14], and queried through an entity-
agnostic online API. As Browsemap is a horizontal platform, it
provides high leverage to each application developer through reuse
of common components, centralized monitoring, and ease of scaling
to the billions of weekly page views on LinkedIn. An application de-
veloper simply specifies the type of collaborative filtering they need,
the location of the input data, and optionally changes any parameters
if needed; the resulting browsemap is then available in Hadoop and
via an online API in a straightforward manner.

The Browsemap platform is established at LinkedIn and powers
over two dozen use cases on the site.

The contributions of this paper are the following:

1. The architecture of a large-scale collaborative filtering system at
a top online property;

2. A description of the diverse set of applications that are pow-
ered through the availability of an easy collaborative filtering
primitive;

3. A collection of lessons learned in developing and deploying the
Browsemap platform in the field.

The rest of the paper is organized as follows. Section 2 describes
the Browsemap platform with Section 3 showcasing the applications
that are powered with this infrastructure. Section 4 recounts lessons
learned in deploying and running browsemaps. Section 5 catalogs
related work and finally, Section 6 concludes.

2. ARCHITECTURE
Browsemap is an item-to-item collaborative filtering platform,

where member browsing histories are used to build a latent graph of
co-occurrences between the entities.

The platform has three properties. First, it supports all entity
types on LinkedIn, such as member profiles, company pages, and
job postings. Creating a browsemap for a new entity type requires
minimal effort. Second, the platform is flexible to address each
entity’s own characteristics. For example, while member profiles
do not expire, a job posting does expire after a certain date. The
computation of the job browsemap needs to remove such expired
jobs. Last, the platform is able to scale, through judicious use of
incremental computation and pipelining, to efficiently scale across
the billions of weekly page views on LinkedIn.
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Figure 1: Examples of browsemaps that are generated for various en-
tities. All of the recommendations are generated from co-occurrence
of views between the items recommended.

Figure 2 illustrates the Browsemap system architecture.
Browsemap platform is a hybrid offline/online system. The offline
system uses Hadoop [15] for its batch computation engine because
of its high throughput, fault tolerance, and horizontal scalability.
Computed browsemaps are bulk loaded into a distributed key-value
store, which permits low-latency queries.

2.1 Offline Batch Computation
LinkedIn’s frontend services emit activity events on every page

view either on LinkedIn’s website or through our mobile application.
These behavior events are transported to Hadoop by a low-latency
distributed publish-subscribe system for event collection [14].

The Browsemap Engine uses the well-known technique of as-
sociation rule mining or co-occurrence [1] to process the data and
generate the latent browsemap graph. The system uses techniques
to dampen entities that are overly popular. For example, President
Barack Obama is an active member of the site and his profile is
viewed several orders of magnitude more than most other members;
this dampening prevents him from being overly correlated through-
out the ecosystem. The system also includes a form of hysteresis so
that newer views are weighted more heavily than older ones, creating
a sense of dynamism.

The engine supports the diverse characteristics of the browsemaps
on LinkedIn. First, there are many entities such as job and com-
pany, and each entity may have multiple types of activity events.
For example, job entity has two types of events—view and apply;
people can view and apply for jobs. Similarly, the company entity
has view and follow activity events. Multiple event types can be
combined together to generate one browsemap or they can each
power a browsemap. For example, job browsemap combines the
job-apply and job-view events with more emphasis on job-apply
activity. Company entity, on the other hand, has company-view and
company-follow browsemaps, each is built on an event type of com-
pany entity. Lastly, different browsemaps can share some common
functionalities while each has its own requirements. For example,
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Figure 2: Browsemap architecture consists of offline computation
on Hadoop to generate a set of browsemaps, and online query API
which fetches the results from a key-value store.

all browsemaps need to filter out activities by spam users, and job
browsemap has an additional requirement to exclude expired job.

To meet the different requirements of the various browsemaps,
we developed an in-house Browsemap Domain-Specific Language
(Browsemap DSL) that describes how to build a browsemap, and
a collection of modules that can be chained together via the DSL.
The module collection contains a set of modules; each one is a
component performing a particular task. Some modules can be used
by different browsemaps such as counting the co-occurrence and
filtering out spam user activities, and some modules are specific to a
browsemap, such as filtering out expired jobs.

A configuration file written in the DSL defines a browsemap
workflow. First it describes the module dependency: which modules
are to be used and how the modules are chained together to create
the workflow. The input dataset and output location of a module are
also specified in the configuration file.

In addition, the Browsemap DSL provides mechanisms to tune
parameters for an entity-specific browsemap workflow. For example,
the browsemap for job entity needs to be refreshed more frequently
due to the ephemeral nature of job postings, but the browsemaps for
company entity can be refreshed less frequently as it is more static.

The collection of modules promotes knowledge sharing and
is a main contributing factor for the quick development of new
browsemaps. While some modules are specific to a browsemap
such as expired job filtering, many are common modules that can be
shared among different browsemaps.

Internally, each module is implemented as a set of Hadoop jobs,
where each job produces output that is the input for the subsequent
job. The workflows are managed and executed by a workflow man-
ager [14]. Certain modules are computed incrementally with Hour-
glass [3], an open-source library that operationalizes incremental
computation of time series data.

The job entity has job-view and job-apply events. Computation
of the job browsemap starts with combining activities from these
two events. The aggregated dataset is the input to the next module
that filters out expired job, a module that is only used by the job
browsemap workflow. After filtering expired jobs, the remaining
active jobs become the input of the subsequent module which is
to filter out activities from spam users. After a few more steps,
the co-occurrence-counting module is used to do the bulk work
of generating the latent graph. Before the workflow finishes, some
techniques to alleviate the cold-start problems are applied to increase
the level of coverage.



Similar to the job entity, company entity also has two event types.
A member can view and follow a company. Contrary to the job
entity that combines the events, company entity has two browsemaps
based on the two event types: company-view and company-follow
browsemaps. The two workflow are very similar in that both use
the same set of common modules such as spam user filtering, co-
occurrence counting, and cold-start techniques. The difference is at
some of the tuning parameters. For example, company-follow events
are less frequent than the company-view events, and thus needs a
longer session length when doing computation. This kind of tuning
parameters are specified in the configuration file that generates the
browsemap workflows.

As of writing, the Browsemap Engine processes hundreds of
terabytes weekly, and has more than 130 Hadoop jobs to compute
all entities.

2.2 Online Query API
All of the browsemap dataset computed by the offline Browsemap

Engine are bulk loaded into Voldemort [13], an open-source dis-
tributed key-value store, for the Browsemap online query API to
access. Voldemort provides low latency, high throughput and high
availability features that facilitate responding to user requests in a
timely manner: 99% of requests are serviced within 10 milliseconds.

The online API is entity-agnostic; no change is needed when
a new browsemap dataset is added into Voldemort. The store is a
composite key of the entity type and identifier, with the value repre-
senting a set of recommendations. We can A/B test different models
by shunting to different recommendation stores for a percentage of
viewing traffic.

3. APPLICATIONS
The Browsemap platform powers many navigational aids on

LinkedIn. They are well received by our members and a substantial
portion of LinkedIn’s traffic is directly attributed to them. Besides
being a principal component of engagement on LinkedIn, these
browsemaps are used in several hybrid recommendation applica-
tions that use a combination of collaborative-filtering and content-
based features. The aggregated behavior of a large number of users
provides strong signals to the applications, in addition to content in-
formation such as member profiles and job description. Inclusion of
collaborative-filtering-based features is to simply plug-in the readily
available browsemap datasets.

3.1 Navigational Aids
LinkedIn has many entities and each entity has a navigational

aid. Figure 1 illustrates a few examples. Shown in Figure 1a, a
navigational aid is displayed on a member’s profile that allows
members to discover other related profiles, as shown in. Similarly,
the group page has the navigational aid showcasing other groups, as
illustrated by Figure 1d.

An entity can be associated with multiple types of activity events,
as in the case of job and company entities. Job navigational aid, as
illustrated by Figure 1c, is computed based on both of its apply and
view events, with more emphasis given to the apply events. A job
seeker’s application to two jobs is a much stronger signal showing
that these two jobs are related.

Company entity, on the other hand, has two navigational aids,
one is powered by the company-follow browsemap and the other
is powered by the company-view browsemap (shown in Figure 1b).
The company-follow browsemap is for deep engagement with a
company; following a company lets members to keep track of the
status updates from this company. The company-view browsemap,
however, is for cursory browsing and serendipitous discovery of

Figure 3: An illustration of Companies You May Want To Follow, a
user-to-company recommendation system. The recommendations
in this module are generated by combining signals from company-
follow browsemap and other content based features.

content. The two navigational aids serve different needs for LinkedIn
members.

Lastly, a particular member segment may want a more customized
navigational experience. Recruiting is a main use case exercised
by premium users of LinkedIn, and recruiters can use a customized
navigational aid to discover profiles that are usually viewed together
by other recruiters. Using the Browsemap platform, this is easily
achieved by plug-in a member selection module that selects viewing
events performed by the recruiting community.

3.2 Companies You May Want To Follow
Companies can establish presence on LinkedIn through Company

Pages. Currently there are more than 3 million companies that have
created Company Pages to showcase their business. “Companies
You May Want To Follow”, illustrated by Figure 3, is a product on
LinkedIn that recommends companies to members using a com-
bination of collaborative-filtering and content-based features. A
member’s previous follow action is a strong signal about interest in
related companies, the information that company-follow browsemap
can provide.

At a high level, the recommendation algorithm finds a set of possi-
ble companies, the candidate set, that the member may be interested
in. Each company in the candidate set forms a (member, company)
tuple with the member. The algorithm computes a propensity score
for each tuple predicting the probability the member will follow this
company. The companies with high propensity scores are returned
as the recommendations for the member.

Figure 4 demonstrates the process that company-follow
browsemap is used to generate the “related-companies” feature.
This feature is used later to enrich the member profile by augment-
ing the textual content input by the member. The feature is generated
by iterating through all of the companies that a member has already
followed and retrieves the company-follow browsemap for each
of them. Merging all of the browsemaps produces a list of related
companies that the member may like.

Besides the company-follow browsemap, this recommendation
system also uses content-based features. Member features such
as industry, location, and experience are used. Company features
include company name, industry, location, and description and so
on.

The propensity score for a (member, company) tuple is computed
by pairwise-matching the related features of the member and com-
pany entities. Figure 5 illustrates the matching process. It is broken
down to a series of matching between member and company features.
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Figure 4: “Companies You May Want To Follow” augments mem-
ber information with the company-follow browsemap. It iterates
through all companies a member already follows, and aggregate the
browsemaps of these companies.
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Figure 5: “Companies You May Want To Follow” has two types
of features for a membe: collaborative-filtering features extracted
from the company-follow and company-view browsemaps, and the
content-based features extracted from the member profile. The algo-
rithm pairwise-matches the corresponding fields from member and
company entities.

For example, the member’s related-companies feature is matched
against the company name from the company entity. The member’s
industry is matched against the company’s industry, and the mem-
ber’s experience is compared with the company’s description. Each
pairwise-matching produces a score based on cosine similarity be-
tween vector space representations of the corresponding features. A
binary classification model that optimizes for click-through-rate is
learned with historical data. The weights learned by the model are
used to combine the individual scores to get an overall propensity
score for this (member, company) tuple.

The company-follow browsemap is important in this product
because it captures a notion of connection between companies that
is driven by members’ preference. It creates a latent graph of the
companies that is not visible by studying the content alone.

3.3 Similar Companies
The previous product “Companies You May Want To Follow”

is a member-to-company recommendation, suggesting companies
based on matching member and company information. “Similar
Companies”, shown by Figure 6, is a different recommendation
product on LinkedIn that suggests companies based on matching
company and company information.

Collaborative-filtering-based and content-based features are ex-
tracted from the company entities. The collaborative filtering fea-
tures include three browsemaps: company-follow, company-view,
and company-occupation browsemaps. They are pairwise-matched

Figure 6: An illustration of Similar Companies, a company-
to-company recommendation system. The recommendations in
this module are generated by combining signals from multiple
browsemaps and other content based features.

Figure 7: “Similar Profiles” is a hybrid recommendation system
for member-to-member suggestions. It uses both company-view
browsemap and profile browsemap to enrich the profile information.

to the target company. The perception is that if the target company
is contained in one or more of the browsemaps, it indicates some
degree of similarity because of the aggregated member behavior.

3.4 Similar Profiles
Helping recruiters and hiring managers to find highly qualified

candidates is an important service LinkedIn provides. Through a
product called “Similar Profiles", hiring professionals can discover
other similar quality talent on LinkedIn.

Company-view browsemap and profile browsemap, along with
several content features from profiles, are used for this recommenda-
tion system. The algorithm for “Similar Profiles” follows the same
design pattern of the previous two recommendation systems.

The company-view browsemap is used to expand the source mem-
ber’s current company to a set of companies. The expanded set
is pairwise-matched against the target company. This expansion
significantly increases the recall of the model. Although this en-
hancement is done with minimal effort due to the availability of
the browsemap dataset, it is one of the most powerful signals in
the model — just leveraging the company-view browsemap alone
increased this product’s contribution to profile view by more than
30%.

The previous examples demonstrate how the browsemap is used
directly as additional features. It is also possible to use browsemap
as a level of indirection, as exhibited by how the profile browsemap
is used to extend the member content information. We can augment
member profiles with more content from other affiliated profiles
profiles. For example, a member’s skill information can be aug-
mented by skills from people he is affiliated with. We call this the
“virtual profile” [8] of the member. In “Similar Profiles”, profile
browsemap is used to find the affiliated members. The perception



Figure 8: An illustration of “Suggested profile updates”. Suggested
location update is a module that recommends a user to update their
current location based on profile browsemap and user’s connections.

is that LinkedIn’s members are more likely to be viewed with other
members who are similar in professional aspects, such as titles, skills,
employment history, and education background. Aggregating the
member information from all of the member’s profile browsemap es-
sentially extends the member’s profile to a much richer profile. A/B
testing proved the perception—we observed that “Similar Profiles”
generates 15% more profile views with the addition of the virtual
profile.

3.5 Suggested Profile Updates
LinkedIn has always encouraged its members to complete as

many sections of their member profile as possible. When a user has
more detailed information such as work experience, education, and
location, LinkedIn is able to provide better service to her with a
richer user experience and more personalized recommendations on
the website.

To make it easier for a member updating a profile, LinkedIn pre-
dicts certain attributes that she has not yet included, such as company
and location. The prediction is shown to the member, and upon ap-
proval, the information is saved to her member profile. Figure 8
shows the suggested location update for a member.

Social graphs of a member can provide strong location clues.
There are two types of graphs: the latent graph provided by the pro-
file browsemap, and the explicit connection graph the member has
established on LinkedIn. The perception of using profile browsemap
is that a member is usually viewed together with the people they
interact with in the real world.

The algorithm’s goal is to find the possible locations for a member.
The problem is formulated to find the likelihood that a member
resides in a particular location. That is, with a collection of (member,
location) tuples, find the probability of each tuple. The member’s
most probable location can be predicted by performing a top-1
operation on these probabilities.

Each tuple is associated with a feature vector that is extracted
from both graphs: the number of related profiles who indicated
on their member profiles that they reside in the given location. The
(member, location) tuple’s probability is computed based on a binary
classification model. Aggregating through all (member, location)
tuples, the location with the highest probability score is used as the
predicted location.

3.6 Lead recommendations
“Lead Recommendation” is a product that helps sales profession-

als discover more leads at their client companies. Figure 9 illustrates
how it is presented to sales professionals. On a key prospective
client’s profile page, a list of recommended members is shown, sug-
gesting some decision-makers and influencers critical to a successful
sale at the same company.

The product is based on the insight that a prospect’s colleagues
who work closely with the prospect and have similar title seniority
levels as the prospect can potentially influence the prospect. The
algorithm is split into two steps, both leveraging the prospect’s
profile browsemap: discovering the prospect’s colleagues in his

Figure 9: An illustration of “Lead Recommendation”, a product
that allows sale professionals to discover of new leads at their client
companies.

Figure 10: A screenshot of related searches in the context of a
search for the query “Hadoop”. It uses search query browsemap as
a signal for generating related searches.

company who he works closely, and identifying the colleagues who
have similar seniority level as the prospect.

The prospect’s profile browsemap and explicit connection graphs
are used to identify his close co-workers. This set of members is the
candidate set, that is, the member pool that the recommendations
are generated from. Similar to the “Suggest Profile Update” product,
with a collection of (prospect, candidate) tuples, the problem can
be formulated as calculating the probability, or the score, of each
tuple. By aggregating the tuples for a prospect, the algorithm returns
a top-n list based on the scores.

Profile browsemap is further used to extract seniority features
from the the member’s current title. Each title in LinkedIn’s database
is associated with a seniority score, representing the number of years
of experience for the average member to achieve that position. The
higher the seniority of a position, the more years it requires to at-
tain the position. Employees with a similar level of seniority in
a company usually have a similar seniority score and are usually
viewed together. Based on this premise, we introduced several fea-
tures utilizing seniority information such as the scores of prospect
and candidate, and the average scores of their profile browsemap
and explicit connection graph.

3.7 Related Searches
Related searches [9] is a search tool that suggests other queries

that are related to the user queries. As shown by an example in



(a) Profile browsemap without mem-
ber profile images

(b) Profile browsemap with member
profile images

Figure 11: An example of UI enhancement without any changes
in the items recommended. Showing profile images resulted in
dramatic increase in CTR.

Figure 10, related searches enables users to refine and explore by
providing alternate related queries, and improves members’ search
experience to find relevant results.

There are four main signals used to capture various dimensions
of relatedness among search queries and to come up with a unified
set of related search suggestions. The first signal is based on col-
laborative filtering and is generated by Browsemap platform. The
collaborative-filtering-based signal uses temporal locality between
queries for relating search queries, that is, searches correlated by
time are considered related. The other three signals are: queries cor-
related by result clicks, queries with overlapping terms, and queries
that are correlated by clicks on related search suggestions. We apply
a step-wise union based approach to combine the search suggestions
generated by each of these signals, where results from collaborative
filtering are given the highest preference since suggestions from
this signal have highest click-through rate. We evaluated each of
these signals and unified search suggestions both offline in terms
of precision-recall metrics, and online through A/B tests. In both of
these evaluations the collaborative-filtering-based signal generated
from Browsemap platform performs significantly better than any
other technique [9].

4. LESSONS LEARNED
The Browsemap platform has been in production at LinkedIn for

over four years. During that time, we learned some valuable lessons
during development and rollout of the system and the products it
supports.

Tall oaks grow from little acorns.
Initially, we developed a profile browsemap that quickly received

traction, which we rolled out to other entity types through a param-
eterized pipeline. However, we noticed other applications wishing
for collaborative filtering, but struggling with scaling and incremen-
talizing computation to handle LinkedIn’s data volume. Rather than
have each team reinvent the wheel, we embarked on creating the
Browsemaps platform.

The availability of this platform allows any developer to quickly
bootstrap a new browsemap and put it into production, typically
in just a day or two. Their application can then query the generic
online API. Most of the developer’s time is spent in understanding
the nature of the product, input data preprocessing, and any vertical-
specific requirements.

Browsemap is almost always used as the first recommendation
product for any new entity or any new action type on the site. For ex-
ample, LinkedIn recently introduced a feature that allows members
to showcase their portfolio of work on their profile page. A natural
extension has been to show a content browsemap. As another exam-
ple, LinkedIn added the ability to follow influential members on the
site to receive their updates and long-form posts. On initial launch,
a browsemap was introduced as part of the sidebar of each article
to show “wisdom of the crowd” recommendations on other articles.
Further, once a member follows an influencer, we know they’re in
“following mode” and can display another browsemap of co-follows
of that influencer in the flow to further increase conversions.

These recommender systems can then be augmented as needed
with more sophisticated similarity rankers using browsemap data ele-
ments as latent features: co-views, co-follows, co-likes, co-comment,
and co-search browsemaps in the influencer case.

A picture is worth a thousand words.
Our observation, which has been reiterated through many exam-

ples, is that the context and presentation of browsemaps or any
recommendation is paramount for a truly relevant user experience.
That is, design and presentation represents the largest ROI, with
data engineering being second, and algorithms last. One must first
understand the user intent, then optimize the flow, and set the right
expectations.

To elucidate this, consider Figure 11, which showcases the profile
browsemaps that appear on a member’s profile page. The recom-
mendations provide a nice pivot when someone is in profile viewing
mode, and the right expectations are set through explainability of
their origins (“People Who Viewed This Profile Also Viewed.”) On
the left, these browsemaps show only the recommended member’s
name and title. On the right, the module also shows a member’s
photo, which makes the recommendations more pleasing and promi-
nent (there were some engineering challenges to keep page load
times constant.) The resulting 50% lift in click-through rate was one
of the largest lifts in recommendation performance, and surpassed
any algorithmic improvements by a sizable margin.

Besides changing the visual appearance, the context is also impor-
tant. As an example, consider the jobs ecosystem at LinkedIn, where
a member can naturally apply for a position after viewing a job page
on the site. After they submit their application, the member is landed
on a confirmation page, as shown in Figure 12. Up to this point the
member is in the context of job searching and thus would very likely
want to explore other related jobs, which is a great vehicle for the
job browsemap. An A/B test of displaying the job browsemap at
the end of the application process versus not indicates an order of
magnitude lift in the job application rate.

One hand washes the other.
Further understanding and experimentation of user intent with rec-

ommendations has led us to the intuition that collaborative filtering-
based and content-based recommendations serve different needs of
members.

The job entity page, as shown in Figure 13, shows job browsemap
recommendations. On the same page, it also shows “similar jobs”,
which performs content-based matching of job postings based on
title, description, required skills, and location similarity. We per-



Figure 12: An illustration of job browsemap to guide users to view
related jobs after applying for a particular job.

formed a true multivariate test showing both recommendations,
showing only one, adjusting locations and the number of recom-
mendations, and found that these recommendation types can coexist
without cannibalization of engagement. In fact, they actually amplify
conversions as each module’s conversion rate is almost independent
of the other, as they independently show different facets. That is,
collaborative filtering fulfills the members’ curiosity to learn from
other people, and content-based recommendation allows user to take
a lead role in discovering new content. We repeated this test across
other entity pages and found the same result.

You can’t get blood out of a stone.
A common problem inherent with collaborative filtering is cold

start [11]. When a new job is posted or a new member registers, there
is no activity on these new entities. Or for infrequently viewed items,
there is sparsity in activity. Desparsification is vertical-specific and
the platform provides techniques that can leverage the social graph
or latent properties from other entities [12]. We’ve also commodi-
tized another technique as part of the Browsemap platform that
we found works reasonably well for our use cases: using a mem-
ber’s browsing history to personalize a backfill of any sparse entity
recommendations.

Consider a member who has viewed several jobs, but then lands
on a newly posted job with only minimal activity and thus a
sparse browsemap. To combat this, the online system surfaces the
browsemaps from the jobs he’s previously viewed merged through a
reduction function. Split testing has found that this technique can
provide high coverage with virtually the same recommendation qual-
ity as measured by the click-through rate. However, the use of this
technique is entity and context-specific. For example, we need to
take care if the browsemap is used inside another recommender.

A chain is only as strong as its weakest link.
Browsemap computation, as any collaborative filtering recom-

mendation, relies solely on user activities and is thus extremely
sensitive to the quality and quantity of input data. Due to the many
numbers and diverse nature of browsemaps that are computed, we
initially faced significant consternation at the quality of input data:

Job Browsemap

Similar Jobs

Figure 13: Job description page has both collaborative filtering and
content-based recommendations. The two recommendation types
can coexist on the same page without cannibalization of engagement.

browsemaps are beholden to instrumentation on frontend services
and the robustness of LinkedIn’s data pipeline. The result was broken
or incomplete browsemaps due to some upstream problem, which
was often time-consuming to diagnose. For example, there could
be a regression when emitting a activity event, which is hard to
catch because it doesn’t break business logic, only later downstream
analysis.

In the last few years, LinkedIn has transformed its data pipeline
from a batch-oriented file aggregation mechanism to a real-time
publish-subscribe system [14]. We added robust auditing to ensure
the per-hop reliable data transfer, from the frontend all the way to
our relevance systems correctly. Browsemap platform also includes
auditing as part of its run to compare input and output coverage
and offline metrics, alerting if there’s significant deviation. Further,
we’ve added code-driven test automation for tracking events, so
most regressions are caught as part of our continuous integration
process, not after release. Data quality has vastly improved since
these systems were put into place.

5. RELATED WORK
Collaborative filtering is a very generic term for a family of al-

gorithms that share the similar goal of suggest new items or to
predict the utility of a certain item for a particular user, based on
the user’s previous actions and the actions of the other like-minded
users. Given a number of different algorithms, the family collabo-
rative filtering algorithms can largely be divided into two families;
memory-based and model-based. Memory-based mechanism is one
of the earliest mechanisms of collaborative filtering. It’s easy to
implement and is effective. Some applied examples of this system
are LinkedIn’s Browsemap and Amazon’s [7] item recommenda-
tion. Model-based mechanism involve developing models using
various data mining and machine learning algorithms. Such algo-
rithms include singular value decomposition, clustering models and
many others. Some applied examples of this system are Netflix’s [5]
video recommendations and YouTube’s [2] recommendation en-
gine. Given the different approaches of collaborative filtering [6],



memory-based approaches are often favored in the industry due to
its simplicity with comparable performance are more amenable to
explaining the reasoning behind prediction [4].

Most literature focuses on the recommendation algorithms while
very few discussed about the creating a system that can serve mil-
lions of users into production. At the time of their writing, Amazon
needed to handle 29 million items and several million catalog items.
YouTube had millions of users with tens of millions of activity
events. Amazon and YouTube also decoupled their offline compu-
tation from online serving to scale their systems. Browsemap is
done in the similar fashion. In addition, Amazon and YouTube both
built system targeted to a specific vertical; book recommendations
for Amazon and movie recommendations for YouTube. LinkedIn’s
browsemap, on the other hand, is a solution that can support the
development and deployment of many products horizontally and
rapidly. It powers several principal recommendation products on
LinkedIn. Browsemap dataset can also be leveraged as a comple-
ment to content-based features in other recommendation products
on a professional social network website.

6. CONCLUSION
In this paper, we presented Browsemap, the item-based collabora-

tive filtering platform at LinkedIn. A hybrid of offline/online system,
Browsemap batch processes the computation-intensive task of cor-
relating similarity among items, while serves results to users with
low-latency. The ease of Browsemap’s usability and quick onboard-
ing procedure have enabled many behavior-based recommendation
products on LinkedIn in the past few years. The various dataset it
produces are also valuable to other content-based recommendations.
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