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ABSTRACT
Recommender systems have become very important for many on-
line activities, such as watching movies, shopping for products, and
connecting with friends on social networks. User behavioral anal-
ysis and user feedback (both explicit and implicit) modeling are
crucial for the improvement of any online recommender system.
Widely adopted recommender systems at LinkedIn such as “People
You May Know” and “Suggested Skills Endorsement” are evolving
by analyzing user behaviors on impressed recommendation items.

In this paper, we address modeling impression discounting of
recommended items, that is, how to model users’ no-action feed-
back on impressed recommended items. The main contribution-
s of this paper include (1) large-scale analysis of impression da-
ta from LinkedIn and KDD Cup; (2) novel anti-noise regression
techniques, and its application to learn four different impression
discounting functions including linear decay, inverse decay, expo-
nential decay, and quadratic decay; (3) applying these impression
discounting functions to LinkedIn’s “People You May Know” and
“Suggested Skills Endorsements” recommender systems.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Filter-
ing; J.4 [Computer Applications]: Social and Behavior Sciences

General Terms
Measurement, Experimentation

Keywords
Impression discounting, Recommender system

1. INTRODUCTION
Analyzing and incorporating user feedback on recommended item-

s is crucial for evolving any recommender systems, which have be-
come important for many online activities and especially for social
networks. At LinkedIn, the largest professional network with more
than 259 million members, recommender systems play significant
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role in engaging users, discovering new content, connections, op-
portunities, and satisfying users needs. LinkedIn exposes connec-
tion or link recommender systems through a feature called “Peo-
ple You May Know” (PYMK) (Figure 1(a)) to recommend other
members to connect with as two people might know each other but
might not be connected with each other on LinkedIn. PYMK ac-
counts for more than 50% of connections and responsible for sig-
nificant growth in the social graph at LinkedIn. Suggestions for
skills endorsements (henceforth, Endorsements) is another recom-
mender system at LinkedIn to endorse connections with their skills
expertise to add to their profiles (Figure 1(b)), and is responsible
for significant portion of skills additions to members’ profiles.

Modeling user behavior and incorporating feedback on live rec-
ommender systems such as PYMK and Endorsements, which are
exposed to millions of users every day, are critical for enhanc-
ing these recommender systems. User feedback on recommended
items viewed by users or impressions, can be explicit or implicit.
User action such as inviting or dismissing a recommended mem-
ber to connect with is explicit feedback in PYMK. On the other
hand, viewing a recommended member or clicking to view the pro-
file of a recommended member, but not inviting to connect, are
examples of implicit feedback in PYMK. There has been extensive
research on modeling explicit feedback in terms of ratings and ac-
ceptance of recommended items [10, 20, 24]. However, modeling
certain implicit feedback such as no action on impressed recom-
mended items for conversion, has been under explored. There has
been some work on estimating Click-through rate (CTR) using past
impressions [1], but CTR estimation is different from conversion
prediction as also argued recently in [5, 16].

Usually a recommender system generates a list of items, ordered
by a score, to show to users. We say a recommended item is im-
pressed when a user views the item. Acceptance of an impressed
recommended item results in conversion. No action from users on
impressed recommended items can be because of multitude of rea-
sons, for example, a user might be busy with other things, or the
recommended item is not relevant or the purpose of the site visit
is very different. In the impression discounting problem we aim to
maximize conversion of recommended items generated by a rec-
ommender system by applying a discounting factor, derived from
past impressions, on top of scores generated by the recommender
system. There are two basic challenges in the impression discount-
ing problem: (1) how can we build an effective model between
conversion and various user behaviors from the large amount of
past impression data? (2) how can the model be applied to im-
prove the performance of existing recommender systems? There
are various factors that can be used in modeling the impact of im-
pressions, such as, (1) the number of times an item is impressed
or recommended to a user, (2) when the item was impressed, and
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Figure 1: (a) People You May Know at LinkedIn recommend-
s other members to connect with. (b) Suggestions for skills
endorsements, a recommender system at LinkedIn to endorse
connections for their skills and expertise, which can be added
to their profile.

(3) frequency of user visits on the site or user seeing any of the
recommended items.

In this work, we present models for discounting impressions of
recommended items based on various factors such as the number
of impressions and the last time the item was seen. The intuition
behind these models is simple; for example, in the case of PYMK,
a recommended member that results in a number of impressions,
but does not lead to an invitation, should be removed or lowered in
the recommended list of members. We performed detailed analy-
sis of past impressions over large amount of tracking data to find
correlation between various factors and conversion rate, for exam-
ple, invitation rate for PYMK. We learned four different regression
models that represent linear decay, inverse decay, exponential de-
cay, and quadratic decay. We developed novel anti-noise regres-
sion techniques to detect outliers and lower the effect of outliers
in learning regression functions. We show empirically that our im-
pression discounting models perform significantly better both in
offline analysis using past data as well as in online A/B testing. In
offline analysis for PYMK, these impression discounting models
show up to 31% improvement in invitation rate, and in online A/B
test experiments, the model improves invitation rate by up to 13%.

The main contributions of this paper are as follows:
• Perform large scale correlation studies between impression

signals and conversion rate of impressed items;
• Design effective impression discounting models based on lin-

ear/multiplicative aggregation, and propose novel anti-noise
regression model to deal with the data sparsity problem;
• Evaluate these regression models on real-world recommenda-

tion systems such as “People You May Know” and “Suggested
Skills Endorsements” to demonstrate their effectiveness both
in offline analysis and in online systems by A/B testing.

The rest of the paper is organized as follows. Section 2 dis-

cusses related work. Section 3 formalizes concept of impressions
in the context of recommender systems and details data sets used
in this work. Section 4 presents exploratory data analysis to figure
out correlations between various user behavior and conversion rate.
This section also describes our impression discounting framework,
and various discounting functions learned through regression. Sec-
tion 4.5.3 describes our anti-noise regression techniques. Section 5
presents experimental results including offline analysis and online
A/B testing results. Finally we conclude in Section 6.

2. RELATED WORK
The related work of this paper falls mainly under one of the fol-

lowing categories.

Implicit Feedback in CF. User implicit feedback plays an essen-
tial role in the recommendation models [2]. Collaborative filtering
(CF) is a typical recommendation model, with the advantage of not
needing the user/item profiles [10, 11, 20, 24]. Hu et al. [9] studied
implicit feedback on CF and proposed a factor model by treating
implicit feedback as the indication of positive and negative pref-
erence associated with varying confidence levels. Koren [10] dis-
covered that incorporating implicit feedback into a neighborhood
latent factor model (SVD++) could offer significant improvemen-
t. On the application side, a local implicit feedback model mining
users’ preferences from the music listening history is proposed in
[22]. Moling et al. [14] exploited implicit feedback derived from
a user’s listening behavior, and modeled radio channel recommen-
dation as a sequential decision making problem. Yang et al. [23]
proposed Collaborative Competitive Filtering (CCF) to learn user
preferences by modeling the choice process with a local competi-
tion effect. Gupta et al. [7] modeled user response to an ad cam-
paign as a function of both interest match and past exposure, where
the interest match is estimated using historical search/browse ac-
tivities of the user. All these methods [9, 10, 23, 7] exploit implic-
it feedback by integrating historical signals with existing recom-
mendation models. In contrast, our impression discounting model
serves as an external plugin of the existing recommendation model,
which has advantages in modularization.

CTR Estimation. The estimate of click-through rate (CTR) for
online resources such as news articles, Ads or search results is
a hot topic, and we categorize the related work into two types:
classification-based estimate and regression-based estimate. For
the first type, Agichtein et al. [2] showed that incorporating user
behavior data can significantly improve the ordering of top result-
s in real web search engines, by treating user behaviors as features
and using classification to re-rank. Richardson et al. [17] employed
logistic regression to predict the CTR for newly created Ads, using
features of ads, terms, and advertisers. For the second type, Agar-
wal et al. [1] proposed a spatio-temporal model to estimate the first
impression CTR of Yahoo! Front Page news articles.

Impression discounting shares some commonalities with the es-
timate of CTR: they both try to predict a user’s future action. How-
ever, they differ in many aspects. First, impression discounting
aims to improve the conversion rate of recommendations, which is
a different goal from CTR estimate, as a click can happen multiple
times and may not result in a conversion action. Second, the exist-
ing work on CTR estimation is mainly focused on new items; for
example, the first exposure of news articles [1] or Ads [17]. The
link between impression history and conversion rate is not covered
in existing studies.

Density-based Approach. Density concepts were first introduced
by density-based clustering [6], which is a traditional way to de-



tect noises [8]. In the context of linear regression, Ristanoski et
al. [18] proposed segmenting the input time series into groups and
simultaneously optimizing both the average loss of each group and
the variance of the loss between groups, to produce a linear model
that has low overall error. Chen et al. [4] introduced a nonlin-
ear logistic regression model for classification, and the main idea
is to map the data to a feature space based on kernel density es-
timation. Kernel regression is another relevant approach, which
estimates the conditional expectation of a random variable by non-
parametric techniques [12]. However, all these approaches [18, 4,
12] cannot combat the noise in linear regression.

3. IMPRESSION DATA IN LARGE-SCALE
RECOMMENDER SYSTEMS

In large-scale recommender systems, impressions are recorded
by the system tracker in real time and usually aggregated as HDFS
dumps on a daily basis. The discovery of business intelligence such
as “People You May Know” from these huge HDFS dumps is a typ-
ical big data mining problem, which raises challenges in both the
model adaptability and scalability. Before jumping to the model-
ing of impression discounting, we start to extract and formalize the
impression data sets in a uniform format, crossing various appli-
cation scenarios, including PYMK, Skill Endorsements, and Key-
word Search Ads. These impression data sets are typically parsed
from HDFS dumps and reflect the daily interaction between users
and popular online recommender systems.

3.1 Formalizing Impressions
Our study on the daily interaction logs of different recommender

systems reveals that there is a common structure behind impression
records from different sources. Without the loss of generality, we
formalize each impression record as a tuple T with six attributes,
as explained below.

Definition 1. (Impression) An impression in the recommender
system is modeled as a tuple T with six attributes:

T = (user, item, conversion, [behavior1, behavior2, · · · ], t, R)

where:
– user is a user ID;
– item is a recommendation item ID;
– conversion is a boolean type to describe whether or not user

takes an action on item in this impression;
– behavior is an observed feature of interaction;
– t is the time stamp of impression;
– R is the recommendation score of item to user, which is pro-

vided by the recommendation engine.

As a convention, we use T .x to refer to attribute x in T .

Conversion. We use the term conversion to indicate that user
explicitly accepts the recommendation. A conversion action may
differ from a user click. For example, a conversion action in PYMK
means that a user does not simply click on the profile page of an-
other user, but instead takes action to invite that user. In job rec-
ommendations, conversionmeans that a user actually applies for
the job item.

Behaviors. User interactions with the recommender system typi-
cally follow a “see-think-do” procedure. The interaction between
users and recommender systems has many facets. We aggregate the
following user behaviors:
• LastSeen: the day difference between the last impression and

the current impression, associated with the same (user, item);

• ImpCount: the number of historical impressions before the
current impression, associated with the same (user, item);
• Position: the offset of item in the recommendation list of
user;
• UserFreq: the interaction frequency of user in a specific rec-

ommender system.
We useX to represent the set of behaviors and usem to describe

the set size, i.e., m = |X|.
Impression Sequence. Given a large impression data set with
each record formatted as tuple T , we can perform a “group-by”
operation on (user, item) to obtain a sequence with the same
(user, item). This sequence can be ordered by time and denot-
ed as seq(user, item) = (T1, · · · , Tn). In a given observation
time window, the sequence length is indicated by ImpCount. Espe-
cially, if seq(T .user, T .item) has the property ImpCount = 1,
we call it T the first impression.

Conversion Rate1. In most recommender systems, once the con-
version is true, item will not be recommended to user again. So
conversion = True only possibly occurs once on the tail of a
sequence. Thus, the overall conversion rate can be defined as the
ratio between the number of impressions with conversion = true
and the number of all impression sequences. Let S denote the set
of impressions. The global conversion rate is computed by

ConveRate =
|{T ∈ S|conversion = true)}|

|S|
(1)

Conversion rate can also be measured on the basis of each behavior
setX . We can “group-by” all impression sequences onX , and then
define the local conversion rate by the formula

ConveRate(X) =
|{T ∈ S|conversion = true & behavior = X)}|

|{T ∈ S|behavior = X)}|
(2)

3.2 Data Set Descriptions
To deploy the impression discounting model, we collect two real-

world data sets from online recommender systems in LinkedIn and
one external public data set from Tencent. In the following section,
we describe the salient characteristics of these data sets.

LinkedIn PYMK Impressions. PYMK is one of the most pop-
ular recommender systems in LinkedIn. The PYMK item is ac-
tually another 2nd or higher degree LinkedIn user. We select an
observation time with a total of 1.08 billion impressions in tracking
data. Out of them, a significant portion of impressions are mul-
tiple, which means at least half the impressions were previously
presented to the users, but get no invitation action. The relatively
long impression sequences in PYMK make it an ideal data set for
modeling impression discounting.

LinkedIn Skill Endorsement Impressions. Skill Endorsement is
another popular recommender system to recognize the skills and
expertise of 1st-degree connections. We collect impressions track-
ing data with 0.19 billion impression tuples, and a small portion
of them are multiple. The item in a tuple is the combination of a
user and his skill. Because endorsements are only allowed for 1st-
degree connections, impression sequences are usually very short
and the conversion rate is relatively high, which implies that the
skill recommendations are more likely endorsed by connections in
the first impression.

1All instances of ConveRate score in this paper have been scaled
in accordance with LinkedIn’s non-disclosure policy.



Tencent SearchAds Impressions2. SearchAds is a data set made
publicly available for KDD Cup 2012 by the Tencent search engine.
It contains various ingredients of the interaction between a user and
the search engine; for example, user, query, Ad ID, depth, position,
etc. In total, this data set has 0.15 billion impression sequences,
and the CTR of the Ad at the 1st, 2nd and 3rd position of the search
session is 4.8%, 2.7%, and 1.4% respectively.

4. IMPRESSION DISCOUNTING MODEL
There are two basic challenges in the impression discounting

problem: (1) how can we learn an effective model between the
conversion and various user behaviors from the big data? (2) how
is the model applied to new impressions and improving the perfor-
mance of existing recommender systems? In this section, we intro-
duce the impression discounting model, which is learned from the
actual impression data sets and integrated as a plugin in the existing
large-scale recommender systems.

4.1 Conventions
For convenience of presentation, we introduce the following con-

cepts and notations:
• Behavior List: a list of behaviors that describe the user’s in-

teraction with the recommender system, denoted as X . The
list size is denoted by m and each element Xi can be ob-
served from the impression records of recommender systems,
e.g., X=(LastSeen, ImpCount).
• Conversion Rate: the actual conversion rate in data sets is

defined by Eq. (2) and denoted by y = ConveRate(X) for
the ease of discussion. The predicted conversion rate by the
model is denoted by ŷ.
• Observation: an observation (X, y) is composed by a behav-

ior set X and its conversion rate y.
• Support of Observation: the support of an observation (X, y)

is the number of impression sequences with the same X that
produces the same y in Eq. (2), denoted by support(X, y).
• Observation Space: the set of all possible observations (X, y)

in the data set, denoted by D.

4.2 Impression Discounting Framework
As an example in LinkedIn PYMK, assume a common scenario

that a user called Alice gets the recommendation for a connection
called Bob in September 20 but takes no invitation action. This
assumption has two folds of meaning: (1) the recommendation en-
gine thinks that Bob has a relatively high recommendation score R
to Alice; (2) it is very likely that Alice is not satisfied with the rec-
ommendation item Bob. If the recommender system ignores this
implicit negative feedback from Alice, most likely Bob will be rec-
ommended to Alice again in another day, which only reduces the
overall satisfaction of Alice. We believe that this kind of scenar-
ios can be easily found in nearly every recommender system, e.g.,
Ad recommendation, job recommendation and even web search en-
gines. Motivated by this example, we design the impression dis-
counting framework, which serves as a module in the existing e-
cosystem of recommender systems, by taking full consideration of
the implicit negative feedback from users. We formalize the im-
pression discounting problem as follows.

Problem 1. (Impression Discounting). Given a large-scale im-
pression data set with each record defined by Definition 1, for each
unique (user, item), supposing the historical impression sequence
2http://www.kddcup2012.org/c/kddcup2012-track2
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Figure 2: The impression discounting framework. Our pro-
posed impression discounting model only relies on the histori-
cal impression records, and can be treated as a plugin for ex-
isting recommendation engines. We use the dotted rectangle to
circle the newly built recommender system with impression dis-
counting, which produces discounted impressions with a higher
overall conversion rate.

is seq(user, item) = (T1, · · · , Tn) (n ≥ 1) and T is the current
impression (i.e., T .t > Tn.t), the problem of impression discount-
ing on T is to determine a discounting factor d (0 < d ≤ 1), which
updates
• T ∗.R = T .R · d;
• seq(user, item) = (T1, · · · , Tn, T );
• seq∗(user, item) = (T1, · · · , Tn, T ∗);

and maximizes

Improvement =
ConveRate∗ − ConveRate

ConveRate
(3)

where ConveRate∗ and ConveRate are computed by Eq. (1)
based on seq∗(user, item) and seq(user, item) respectively.

To explain why impression discounting helps improve the over-
all conversion rate, we use the following example. Suppose that in
a user interaction session, the recommendation engine fetches top
100 recommendation items ranked by T .R and 50 of them will be
observed by the user. If without impression discounting, existing
recommendation engine will present the top 50 items ranked by
T .R to the user. However, since a large portion of item impres-
sions are multiple, their historical negative feedback indicates that
their conversion rate will be low. Now we consider a newly built
recommender system with impression discounting. Since impres-
sions are discounted properly by d where d ≤ 1, all 100 items will
be re-ranked. Ideally, items with less negative feedback will bub-
ble up into top 50 list and be exposed to user’s observation, which
results in a higher overall conversion rate.

We show the impression discounting framework in Figure 2. Ba-
sically, we assume that R is already produced by the best-known
recommendation method, and the computation of R is not the fo-
cus of this paper. Our proposed impression discounting model only
relies on the historical impression records in the past observation
time window. In other words, impression discounting can work
independently with the recommendation engine. Once added as a
plugin into the recommender system, impression discounting mod-
el will produce a discounting factor d, which penalizes items that
not likely gain a conversion action and makes the recommendation
list re-ranked. A properly designed impression discounting model
will make the overall conversion rate increasing and improve user’s



satisfaction. The challenge of the impression discounting problem
is how to design an effective model that determines the optimal d
to re-rank the recommendation list with intuitive explanation.

Impression Discounting: Plugin vs. In-Model. There are typical-
ly two ways to incorporate impression discounting into an existing
recommendation system: serve as an independent plugin or push in
the recommendation model. The plugin approach does not change
the existing recommendation model, and the impression discount-
ing is performed by multiplying a discounting coefficient dwith the
recommendation score. In contrast, the in-model approach modi-
fies the existing recommendation model by adding more signal-
s. For example, supposing the recommendation model is based
on classification, the in-model approach will add signals like im-
pCount, lastSeen as additional features. Although easy to imple-
ment, the in-model approach has restrictions on following aspects,
compared with the plugin approach:
• Structural Modularization. In large IT companies with huge

user volume, the architecture of the recommender system is
complicated and the modification of an existing mature rec-
ommendation model is very cautious and prudent. The plu-
gin approach has the advantage of not changing the existing
recommendation model, which avoids the risk and makes the
recommender system better organized.
• Model Independence. In recommendation-centric companies,

the recommendation model is widely treated as the core com-
petitiveness of a company, and is generally confidential. The
plugin approach does not require to know any details about the
recommendation model, which can be treated as a black box.

Based on the above benefits, the impression discounting frame-
work proposed in this paper follows the plugin approach.

4.3 Hypothesis Testing
We have a basic hypothesis for the impression discounting:

Hypothesis 1. Impression T with conversion = false is a
negative feedback to the recommendation of item to user.

If this hypothesis is false, the recommender system will always
try to recommend items with a longer impression history to gain
a higher conversion rate, and these long impression sequence will
dominate the recommendation list, preventing new items being dis-
played. If this is the case, the discounting factor d ≤ 1 in the
problem definition will become invalid, as the conversion rate may
increase if the impression sequence becomes longer. Thus, if this
hypothesis is false, the impression discounting framework will be
problematic. To verify this hypothesis on real-world impression
data sets, we measure the change of ConveRate with increasing
impression sequence length, as shown in Figure 3. As we can see,
on all three data sets, ConveRate decreases very fast as increasing
ImpCount in the beginning. Later, the decreasing trend becomes
steady, and when ImpCount is high (which is rare in observation),
there are some turbulences on the tail of the curves due to the data
sparsity problem. The impression sequences of the Endorsement
data set are very short in length and ConveRate decreases even
faster than the other two data sets. In a nutshell, Figure 3 verifies
that Hypothesis 1 is true, and also reveals that the discounting fac-
tor in the Endorsement data set should be more severe and smaller
than the other two data sets.

4.4 Exploratory Analysis
Correlation Analysis. It is essential to explore the correlation con-
fidence between conversion rate and user behaviors. An effective
way to tackle the correlation analysis is using non-parametric s-
moothers in a generalized additive model (GAM) [13] to fit the
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Figure 4: Correlation confidence analysis between ConveRate
and two behaviors on PYMK data.

conversion rate. We perform GAM fitting on the PYMK data set
and show the correlation analysis between conversion rate and Im-
pCount, LastSeen in Figure 4. The narrow intervals in Figure 4(a)
and (b) suggest that the curvatures of the correlation are both strong.
Moreover, as the interval in Figure 4(a) is even narrower than the in-
terval in Figure 4(b), we conclude that ConveRate has a stronger
correlation with LastSeen than the correlation with ImpCount. In
other words, LastSeen plays a more important role than ImpCount
in determining conversion rate. The monotone decreasing trend-
s suggest that the correlations are both negative. The correlation
analysis for other user behaviors and in Endorsement and SearchAd-
s data sets delivers similar messages. We omit the details due to
space constraints.

Discounting Functions. Based on the correlation analysis, we de-
fine discounting functions to model the negative relationship be-
tween the conversion rate and a specific user behavior. In particular,
we introduce the following four kinds of discounting functions:
• Linear Discounting: fL(x) = α1 · x+ α2;
• Inverse Discounting: fI(x) = α1

x
+ α2;

• Exponential Discounting: fE(x) = eα1·x+α2 ;
• Quadratic Discounting: fQ(x) = α1(x− α2)

2 + α3.
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Figure 5: The change of normalized conversion rate with increasing LastSeen and ImpCount. We simulate all observations by four
discounting functions, and exponential discounting achieves the minimal RMSE.

RMSE ConveRate∼LastSeen ConveRate∼ImpCount
Linear 0.0041 0.0032
Inverse 0.0039 0.0053

Exponential 0.0012 0.0028
Quadratic 0.0024 0.0029

Table 1: RMSEs of various discounting functions.
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Figure 6: Impression discounting model workflow.

We use PYMK as the default data set, and show the conversion
rate vs. LastSeen and ImpCount in Figure 5. Since the supports
of observations for a high LastSeen or ImpCount is really low, the
curve tails in Figure 5(a) and (b) become fluctuant, which brings
new challenges for curve-fitting, a problem we will study in Sec-
tion 4.6. So far, we perform regression and show the root mean
square error (RMSE) of different discounting functions to the actu-
al observations in Table 1. As we can see, exponential discounting
achieves the overall minimal RMSE with the best fitting quality.
More evaluation of discounting functions can be found in Section 5.
In our impression discounting model, these discounting functions
will serve as the atoms in the multiple variable regression process.

4.5 Aggregated Discounting Model
Conversion rate is determined by multiple facets of user behav-

iors. For example, it is confirmed that ImpCount and LastSeen will
influence the invitation rate in PYMK. To model conversion rate ac-
curately, we propose an aggregated discounting model in this paper,
which integrates multiple discounting functions into a hybrid mod-
el. There are typically two ways to incorporate multiple variables
into a model: linear or multiplicative combinations. We explore
both of them in this section.

Workflow. The major workflow of the impression discounting
model is presented in Figure 6. Without any prior knowledge,
the correlation analysis is a great way to discover the correlation
strength and polarity between the conversion rate and a specific
user behavior. Correlation analysis also helps determine which dis-
counting function fits the observations best by comparing RMSE,
and narrows down the search space for the model candidates. Each
candidate model will be learned by the regression from the training
data set. Finally, we perform a model evaluation for each candidate

on the testing data set, and the model with the best performance will
be selected as the optimal discounting model for the corresponding
recommender system.

Regression vs. Classification. Classification is a typical machine
learning technique for decision making. Since our impression dis-
counting framework follows the plugin approach, given that the
recommendation scoreR is obtained from the best-available classi-
fication model, it will bring severe redundancy problem if we apply
the classification model again on features in impression discount-
ing. Besides, compared with the classification, regression can pro-
vide a better and more intuitive explanation of impression discount-
ing by discounting functions.

4.5.1 Linear Aggregation Model
The first aggregated discounting model we explore is the linear

model. Linear aggregation model combines discounting functions
of different user behaviors by a linear function, in the form:

ŷ =

m∑
i=1

wif(Xi) (4)

where m = |X| and f(Xi) is any one of discounting functions.
Given a specific behavior Xi, the correlation analysis will help de-
cide which discounting function is the best choice for f(Xi). wi
is the weight for the discounting function and will be learned. It is
well known that too many parameters in the linear model will re-
sult in over-fitting. Actually, once we select the specific discounting
functions, the parameters in Eq. (9) can be reduced greatly. Here is
an example with three different behaviors:

ŷ = w1 · fL(X1) + w2 · fI(X2) + w3 · fE(X3) (5)

= w1 · (α1X1 + α2) + w2 · (
α3

X2
+ α4) + w3 · eα5X3+α6

= w1α1 ·X1 + w2α3 ·
1

X2
+ w3e

α6 · (eα5 )X3 + w1α2 + w2α4

= u1 ·X1 + u2 ·
1

X2
+ u3 · αX3 + u4

where α = eα5 . In general, combing like terms in Eq. (9) can
reduce the parameters from the order of 3m to (m + 1). These
parameters can be learned by standard linear regression packages.

4.5.2 Multiplicative Aggregation Model
Multiplicative aggregation is another way to combine discount-

ing functions, in the form:

ŷ = w

m∏
i=1

f(Xi) (6)



Supposing each discounting function has two parameters on aver-
age, Eq. (6) has (2m + 1) parameters to learn. We try to reduce
the number of parameters, by performing a linearization, in the fol-
lowing way:

ln ŷ = lnw +

m∑
i=1

ln f(Xi) (7)

If f(Xi) is the exponential discounting, Eq. (7) degrades to a
simple linear regression with (m+1) parameters without accuracy
loss. Otherwise, we can discard the constants or lower order terms
in discounting functions and obtain an approximated version of Eq.
(7) with (m+ 1) parameters.

4.5.3 Impression Discounting Factor
Both linear aggregation and multiplicative aggregation can be

linearized as a uniform form shown below

ỹ =

m∑
i=0

uiX̃i (8)

where ỹ = ŷ in linear aggregation and ỹ = ln ŷ in multiplicative
aggregation. We set X̃0 = 1 and when i ≥ 1, we have X̃i ∈
{Xi, 1

Xi
, αXi , X2

i } for linear aggregation and X̃i ∈ {lnXi, Xi}
for multiplicative aggregation. It is trivial to show support(X̃i) =

support(Xi). The selection of X̃i depends on the kind of dis-
counting functions for each behavior in the model. For example, in
multiplicative aggregation, if f(Xi) is the inverse discounting, we
have X̃i = lnXi. Eq. (8) can be written in matrix notation as

ỹ = X̃Tu (9)

Once we obtain the aggregated discounting model, the impression
discounting factor d for a impression tuple T can be computed by
the normalized value of ỹ, which falls in (0, 1]. That is,

d =
ỹ

max ỹ
(10)

4.6 Anti-Noise Regression Model
Eq. (9) transforms the aggregated discounting model as a linear

regression problem, whose objective function is to minimize the
mean squared error, with a form

RMSE2 =
1

n

n∑
i=1

(yi − ỹ)2 =
1

n

n∑
i=1

(yi − X̃i
T
u)2 (11)

In the practice of model-fitting, we observed a number of cases that
the sparsity of observation supports may make the conversion rate
go too high or too low. Examples are found on the curve tails in
Figure 5(a) and 5(b). If yi deviates from the overall trend of its
neighboring observations because of sparsity, the objective func-
tion Eq. (11) will suffer a lot because it tries to minimize the d-
ifference between the local overall trend and sparse observations.
Ideally, it would be perfect if outliers of observations can be re-
moved by a well-designed mechanism and the observations with
less supports can be penalized in the objective function.

Notice that the naive approach that truncates the curve tail by a
threshold on the minimal support of an observation is problematic,
because: (1) this will also remove the observations that don’t devi-
ate a lot from their local overall trends; (2) the threshold is difficult
to decide, because on the scale of billions of records, the “sparsity”
is a relative concept, where a “sparse” observation may still have
millions of supports.

4.6.1 Outlier Observation Detection
In related work, density-based clustering [6] defines clusters as

areas of higher density than the remainder of the data set, and the
key idea is that for each node in the cluster, the number of neigh-
bors within a radius ε should exceed a threshold δ. Density-based
clustering has the benefit of distinguishing clusters and outliers in a
data space efficiently. Inspired by it, we model the density of an ob-
servation as the support sum in a small neighborhood of this obser-
vation. The migration of density concepts to the linear regression is
a contribution of this paper. To start, we define ε-neighborhood of
a behavior list X in multiple-variable linear regression as follows.

Definition 2. (ε-neighborhood of a behavior). The ε-neighborhood
of a behavior set X , denoted by Nε(X), is defined by Nε(X) =
{X ′ ∈ D|dist(X,X ′) ≤ ε}.

The shape of ε-neighborhood is determined by the choice of the
distance function dist(X,X ′). Without the loss of generality, we
consider the Euclidean distance is the choice for multi-dimensional
feature space, that is

dist(X,X ′) = dist(X ′, X) =

(
n∑
i=1

(Xi −X ′i)2
) 1

2

(12)

Density-based clustering does not define the concept of “con-
nection” between points. In our anti-noise regression model, as
each behavior list X is associated with a response value y, we use
connection to describe the relationship between two pairs of obser-
vations, as defined below.

Definition 3. (Connection in ε-neighborhood). Given two d-
ifferent observations (X, y) and (X ′, y′), they are connected if
dist(X,X ′) ≤ ε and |y − y′| ≤ γ, where γ is the maximal toler-
ance for local deviation.

We compute the density of an observation (X, y) as the sum of
supports connected with (X, y) in the ε-neighborhood:

density(X, y) =
∑

X′∈Nε(X),|y−y′|≤γ

support(X ′, y′) (13)

Density score will categorize observations into three types:
• Core Observations: (X, y) is a core observation, if the sup-

port of connected observations within the ε-neighborhood ex-
ceeds the threshold δ. That is, density(X, y) ≥ δ.
• Border Observations: (X, y) is a border observation, if (X, y)

is not a core observation but connects to at least one core ob-
servation.
• Outlier Observations: (X, y) is an outlier observation, if

(X, y) is neither a core nor a border observation.
Intuitively, outlier observations capture those observations that

are unreliable by deviating from the local trends of nearby observa-
tions. Basically, all the outlier observations can be discarded before
the linear regression. We can tune density parameters {ε, δ, γ} to
control the percentage of outlier observations in the observation s-
pace. As a general guideline, {ε, γ} is usually fixed for a specific
impression data set, and we set 5% as the percentage of outlier ob-
servations out of all observations, which can be tuned by δ.

We explain the intuition of noise detection from the graph per-
spective. If we view each observation as a node and a connection
between observations as an edge, an observation network will be
built. Core observations will be those nodes with a high connectiv-
ity to other nodes. Those nodes represent high authority ranking in



the network analysis such as PageRank [15]. Outlier observations
are those nodes with low degrees and no edges to any high authori-
ty nodes, and they usually represent the marginal, isolated or noisy
part of the network. Removing these outlier nodes will make the
whole network structure more cohesive and accurate to model.

4.6.2 Density Weighted Regression
In RMSE shown in Eq. (11), the error between the actual con-

version rate y and predicted conversion rate ỹ are weighted equally.
However, we argue that for observations with high supports, their
errors should be emphasized in the objective function, compared
with the observations with a relatively low supports. To achieve
the goal, we propose the density weighted regression, which adds
a weight vi for each error (yi − X̃i

T
u), with a modified objective

function given below

RMSE2
v =

1

n

n∑
i=1

(vi(yi − X̃i
T
u))2 (14)

The problem is how to decide vi. One naive solution is using the
ratio between the support of an observation and the total supports
to weight the corresponding error, that is v∗i = support(Xi)∑

X∈D support(X)
.

The assumption of this solution is that the distribution of support(Xi)
is “smooth” in Xi’s local neighborhood. That is to say, compared
with the support of Xi’s neighbors, support(Xi) should not be
remarkably too high or too low. However, in real-world data set-
s, support(Xi) is likely not smooth due to the sparsity problem.
Instead, we propose an advanced solution, by adopting the density
parameter ε:

vi =
Average(

∑
Xj∈Nε(Xi),|yi−yj |≤γ support(Xj))∑

X∈D support(X)
(15)

Notice that Xi ∈ Nε(Xi). The rationale behind Eq. (15) is that,
the supports of all similar observations in the neighborhood of Xi
contributes to the weight of (Xi, yi). In the extreme case, if ε = 0,
we have Nε(Xi) = {Xi} and vi degrades to the naive solution. If
ε = ∞ and γ = 1, Nε(Xi) = D and vi = 1, making Eq. (14)
degrades to the unweighted version (Eq. (11)). Typically, we set
ε smaller than 5, making vi as the ratio between the supports of
ε-neighborhood and the total supports. vi is smoother than v∗i and
highlights the observations with high supports effectively.

Next, we can write Eq. (14) in matrix notation as n ·RMSE2
v =

(V y− V Xu)T (V y− V Xu), where V = diag(v). If we take the
derivative of n ·RMSE2

v with respect to u, we get (V X)T (V y−
V Xu). By setting the derivative to zero, we solve u by the follow-
ing reasoning:

û = ((V X)T (V X))−1(V X)T (V y) (16)

= (XT (V TV )X)−1XT (V TV )y (17)

= (XTV 2X)−1XTV 2y (18)

where V 2 = diag(v◦v) and ◦ is the Hadamard product [21] (a.k.a.
entrywise product) for vectors. Eq. (18) can be actually viewed as
a kind of locally weighted linear regression problem [19], where
V 2 is the weighting matrix.

In the case that the matrix XTV 2X is singular, we cannot solve
û by Eq. (18) by the inverse operation. It is well known that Ridge
regression [3] adds an additional matrix λI to the matrix XTX in
linear regression to make it non-singular. In our anti-noise regres-
sion model, we can apply a similar technique and estimate û by

ûridge = (XTV 2X + λI)−1XTV 2y (19)

where λ is determined by minimizing RMSE.

4.7 Model Evaluation
Imagining that we have n choices for discounting functions, the

number of different aggregation models can be as high as nm for
both linear aggregation and multiplicative aggregation. Although
correlation analysis can rule out a large portion of aggregation mod-
els by selecting discounting functions with low RMSE, we stil-
l need standard evaluation metrics to compare different aggrega-
tion models and find the optimal discounting model for the recom-
mender system. In this paper, we use the following evaluation met-
ric to assess the performance of an aggregated discounting model:
• Precision at Top k. In the testing data set, given a user,

we return the top k item set Lk ranked by T .R · d without
looking at the conversion attribute, where d is computed by
the aggregated discounting model. Precision at Top k will be
measured as the conversion rate of Lk, which is

P@k =
seqSize(conversion = true)

k
(20)

5. EXPERIMENTAL EVALUATION
In this section, we test the proposed impression discounting mod-

el on three real online impression data sets: LinkedIn PYMK, LinkedIn
Endorsement and Tencent SearchAds. The data set details are de-
scribed in Section 3.2.

5.1 Correlation Analysis
Correlation analysis helps determine which discounting function

can fit the relationship between the conversion rate and a user be-
havior the best. We perform correlation visualization in 2-D and
3-D respectively.

5.1.1 2-D Correlation Analysis
The 2-D correlation analysis between the conversion rate and a

specific behavior is an effective way to discover the strength and
type of relationships between them. Figure 7 shows the conver-
sion rate vs. LastSeen, Position and UserFreq on three real data
sets. The conversion rate vs. ImpCount has already been shown
in Figure 3. In Figure 7(a), we can see conversion rate in PYMK
decreases faster with LastSeen than the conversion rate in the En-
dorsement data set, which reveals that LastSeen for Endorsement
is less important than it for PYMK. LastSeen is not available in
SearchAds data set. Figure 7(b) shows the relationships between
the conversion rate and offset positions in the recommendation list.
Clearly, if an item is ranked lower in the recommendation list, its
conversion rate will be lower. Endorsement data set has the steepest
decreasing trend, compared with the other two data sets. In Figure
7(c), we show the conversion rate as the increasing of UserFre-
q. Surprisingly, we find that the conversion rate increases in both
PYMK and Endorsement. The explanation may be that, a higher
UserFreq indicates that user is more active in the recommender
system, and also more likely to take conversion actions. UserFreq
does not play an important role in SearchAds, most likely because
users do not have enough stickiness to a general web search engine.

5.1.2 3-D Correlation Analysis
In Figure 8, we perform the 3-D visualization between conver-

sion rate and two user behaviors on three data sets respectively.
Each ball represents an observation, which is the conversion rate
with respect to a specific value of user behaviors. As we can see, on
the PYMK data set (Figure 8(a)), ConveRate decreases with both
ImpCount and LastSeen. However, on the Endorsement data set
(Figure 8(b)), ConveRate is not very sensitive with LastSeen, as
supported by Figure 7(a). Figure 8(b) also shows there are many
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Figure 7: Conversion rate vs. LastSeen, Position and UserFreq
on three real data sets.

Behavior Set Precision Improvement
PYMK (P@10)

LastSeen, ImpCount 13.7%
LastSeen, ImpCount

31.3%Position, UserFreq
Endorsement (P@10)

LastSeen, ImpCount 1.3%
LastSeen, ImpCount

3.4%Position, UserFreq
SearchAds (P@5, 10)

ImpCount 0.53%(P@10)
ImpCount, Position 3.2%(P@10)
ImpCount, Position 6.87%(P@5)

Table 2: The improvement of precision at top k of the impres-
sion discounting model on different real-world data sets. The
improvement rate is computed based on the precisions at top k
without discounting.

outlier observations even when ImpCount < 10, mainly because
most impression sequences in Endorsement data set are very short
and the sparsity problem becomes very critical. On the SearchAds
data set (Figure 8(c)), because LastSeen is not available, we show
ConveRate vs. ImpCount and Position, which clearly decreases
along both dimensions.

5.2 Model Evaluation

5.2.1 Precision at Top k

We split each impression data set into training and testing sets,
and the impression discounting model is learned from the training
set. We use precision at top k defined by Eq. (20) on the testing
set to evaluate the performance of different aggregated discounting
models. The precision improvement of the impression discounting
model, compared with the baseline without a discounting model,
is shown in Table 2. As we can see, if we integrate more user be-
haviors into the impression discounting model, the precision will
be improved: the 4-behavior model on both PYMK and Endorse-
ment gains at least two times higher precision growth compared
with the 2-behavior model. Also, the precision growth on PYMK
is obviously higher than the precision growth on Endorsement and
SearchAds, because impression sequences in PYMK is distinctly
longer than the impression sequences in the other two data sets. As
proof, P@5 is obviously higher than P@10 on SearchAds, because

(a) PYMK 3-D (b) Endorsement 3-D

(c) SearchAds 3-D

Figure 8: The 3-D visualization between conversion rate and
user behaviors on three real data sets.

X1: LastSeen; X2: ImpCount
Group A: Without Impression Discounting
Group B: Improvement
α1 · αX1

2 · αX2
3 11.97%± 0.2%

( α1
X1

+ α2) · αX2
3 13.26%± 0.2%

(α1 ·X1 + α2) · αX2
3 12.18%± 0.2%

Table 3: The A/B test results of precision at top 10 of differ-
ent impression discounting models on PYMK data set, with
X =(LastSeen, ImpCount).

a user has 5.8 items on average, and the precision on top 10 items
of each user is not an effective evaluation metric.

5.2.2 A/B Testing
We implemented the impression discounting model in the LinkedIn

PYMK recommender system, and the online A/B test results is
shown in Table 3. This impression discounting model uses two be-
haviors, LastSeen and ImpCount. We fix the ImpCount dimension
as the exponential discounting (as it has the minimal RMSE), and
try the LastSeen by exponential discounting, inverse discounting,
and linear discounting respectively. The results show that exponen-
tial discounting achieves a slightly better precision improvement,
and all the Group B models gain significant improvements by in-
corporating impression discounting in recommendations.

5.2.3 Enhancing Linear Regression
In this section, we evaluate the density weighted regression pro-

posed in Section 4.5.3. Compared with traditional linear regres-
sion, density weighted regression removes the outlier observations
and assigns weights to observations based on their supports. Figure
9(a) shows the distribution of observation supports is very skewed
and follows power-low distribution. If we treat these observations
as unweighted, the squared error of each observation using tradi-
tional linear regression is shown in the lower line in Figure 9(b).
As we can see, although linear regression minimizes the sum of
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Figure 9: (a) The support of observations with specific Imp-
Count in logarithmic scale. (b) The squared error of each obser-
vation by traditional linear regression and our anti-noise linear
regression. Experiments are performed on PYMK data.

squared errors by reducing the area under the curve (AUC), squared
errors are high when ImpCount is small. Since Figure 9(a) reveals
that most observations have small ImpCount, traditional linear re-
gression suffers from the problem that the majority of impression
sequences have high prediction error.

In contrast, density weighted regression tries to minimize the
prediction error of impression sequences. In this experiment, we
set ε = 2, γ = 0.01 and δ = 2. In the preprocessing, we detect
and remove 5 observations on the tail. We set the weights by Eq.
(15), and the squared errors are shown by the upper line in Figure
9(b). Although the AUC of density weighted regression is larger
than the traditional linear regression, the squared errors are mini-
mized when ImpCount is small. To evaluate their performance in
model-fitting, we instantiate the RMSE in Eq. (14) by

RMSE2 =
1∑

X∈D support(X)

n∑
i=1

(support(Xi, yi)(yi−X̃i
T
u))2

(21)
On PYMK data set, we compute the RMSE for traditional linear

regression and density weighted regression as 0.1121 and 0.0188
respectively, which indicates density weighted regression performs
much better than linear regression when the distribution of obser-
vation supports is skewed.

6. CONCLUSION
In this paper, we focuse on the impression discounting problem

in large-scale recommender systems, in which a user’s impressions
on historical recommended items are discounted to re-rank the rec-
ommendation list. User satisfaction quantified by the conversion
rate is expected to be improved due to the re-ranking. To precise-
ly capture each facet of user interaction, we build impression dis-
counting models by integrating discounting functions of user be-
haviors into a linear or multiplicative aggregation model. More-
over, to resolve the sparsity problem on observation supports, we
propose anti-noise regression model to remove the outlier observa-
tions and perform a density weighted regression, which achieves a
better prediction quality than the traditional linear regression. The
proposed impression discounting framework is evaluated on three
real-world data sets from LinkedIn and Tencent. The precision im-
provement on these impression data sets supports the effectiveness
of our impression discounting model.
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