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Who am I?
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What do I mean by Data Products?
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People You May Know

4
4



Profile Stats: WVMP
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Viewers of this profile also ...
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Skills
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InMaps
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Data Products: Key Ideas

Recommendations

People You May Know, Viewers of this profile ...

Analytics and Insight

Profile Stats: Who Viewed My Profile, Skills

Visualization

InMaps
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Data Products: Challenges

LinkedIn: 2nd largest social network

120 million members on LinkedIn

Billions of connections

Billions of pageviews

Terabytes of data to process
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Systems and Tools

Kafka (LinkedIn)

Hadoop (Apache)

Azkaban (LinkedIn)

Voldemort (LinkedIn)
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Systems and Tools

Kafka

publish-subscribe messaging system

transfer data from production to HDFS

Hadoop

Azkaban

Voldemort
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Systems and Tools

Kafka

Hadoop

Java MapReduce and Pig

process data

Azkaban

Voldemort
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Systems and Tools

Kafka

Hadoop

Azkaban

Hadoop workflow management tool

to manage hundreds of Hadoop jobs

Voldemort
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Systems and Tools

Kafka

Hadoop

Azkaban

Voldemort

Key-value store

store output of Hadoop jobs and serve in production
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People You May Know
Alice

Bob Carol
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How do people 
know each other?
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People You May Know
Alice

Bob Carol
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How do people 
know each other?
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People You May Know
Alice

Bob Carol

Triangle closing
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How do people 
know each other?
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People You May Know
Alice

Bob Carol

Triangle closing
Prob(Bob knows Carol) ~ the # of common connections
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How do people 
know each other?
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Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE                                                 
             generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE 
                               flatten(group) as (source_id, dest_id), 
                               COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();
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Pig Overview

Load: load data, specify format 

Store: store data, specify format

Foreach, Generate: Projections, similar to select  

Group by: group by column(s)

Join, Filter, Limit, Order, ...

User Defined Functions (UDFs)
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Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
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Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)
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connections = LOAD `connections` USING 
PigStorage();
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Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

30

group_conn = GROUP connections BY 
source_id;
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Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

31

pairs = FOREACH group_conn GENERATE 
generatePair(connections.dest_id) as (id1, id2);
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Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A) 
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

32

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn 
GENERATE flatten(group) as (source_id, dest_id), 
COUNT(pairs) as common_connections;
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Our Workflow

triangle-closing
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Our Workflow

triangle-closing

top-n
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Our Workflow

triangle-closing

top-n

push-to-prod

35
35



Outline
What do I mean by Data Products? 

Systems and Tools we use

Let’s build “People You May Know”

Managing workflow

Serving data in production

Data Quality

Performance
36

36



Our Workflow

triangle-closing

top-n

push-to-prod
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Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections
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Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections

push-to-qa
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PYMK Workflow
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Workflow Requirements
Dependency management
Regular Scheduling
Monitoring
Diverse jobs: Java, Pig, Clojure
Configuration/Parameters
Resource control/locking
Restart/Stop/Retry
Visualization
History
Logs
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Workflow Requirements
Dependency management
Regular Scheduling
Monitoring
Diverse jobs: Java, Pig, Clojure
Configuration/Parameters
Resource control/locking
Restart/Stop/Retry
Visualization
History
Logs

Azkaban
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Sample Azkaban Job Spec

type=pig

pig.script=top-n.pig

dependencies=remove-connections

top.n.size=100
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Azkaban Workflow
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Azkaban Workflow
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Azkaban Workflow
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Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections
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Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections
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Production Storage

Requirements

Large amount of data/Scalable

Quick lookup/low latency

Versioning and Rollback

Fault tolerance

Offline index building
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Voldemort Storage

Large amount of data/Scalable

Quick lookup/low latency

Versioning and Rollback

Fault tolerance through replication

Read only

Offline index building
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Data Cycle
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Voldemort RO Store
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Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections
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Data Quality

Verification

QA store with viewer

Explain

Versioning/Rollback

Unit tests
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Performance
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Performance

Symmetry

Bob knows Carol then Carol knows Bob
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Performance

Symmetry

Bob knows Carol then Carol knows Bob

Limit

Ignore members with >  k connections
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Performance

Symmetry

Bob knows Carol then Carol knows Bob

Limit

Ignore members with >  k connections

Sampling

Sample k-connections
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SNA Team

Thanks to SNA Team at LinkedIn

http://sna-projects.com

We are hiring!
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Questions?
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