
Building Data Products
using Hadoop at Linkedin

Mitul Tiwari
Search, Network, and Analytics (SNA)

LinkedIn

1
1

Who am I?

2
2

What do I mean by Data Products?

3
3

People You May Know

4
4

Profile Stats: WVMP

5
5

Viewers of this profile also ...

6
6

Skills

7
7

InMaps

8
8

Data Products: Key Ideas

Recommendations

People You May Know, Viewers of this profile ...

Analytics and Insight

Profile Stats: Who Viewed My Profile, Skills

Visualization

InMaps

9
9

Data Products: Challenges

LinkedIn: 2nd largest social network

120 million members on LinkedIn

Billions of connections

Billions of pageviews

Terabytes of data to process

10
10

Outline
What do I mean by Data Products?

Systems and Tools we use

Let’s build “People You May Know”

Managing workflow

Serving data in production

Data Quality

Performance
11

11

Systems and Tools

Kafka (LinkedIn)

Hadoop (Apache)

Azkaban (LinkedIn)

Voldemort (LinkedIn)

12
12

Systems and Tools

Kafka

publish-subscribe messaging system

transfer data from production to HDFS

Hadoop

Azkaban

Voldemort

13
13

Systems and Tools

Kafka

Hadoop

Java MapReduce and Pig

process data

Azkaban

Voldemort

14
14

Systems and Tools

Kafka

Hadoop

Azkaban

Hadoop workflow management tool

to manage hundreds of Hadoop jobs

Voldemort

15
15

Systems and Tools

Kafka

Hadoop

Azkaban

Voldemort

Key-value store

store output of Hadoop jobs and serve in production

16
16

Outline
What do I mean by Data Products?

Systems and Tools we use

Let’s build “People You May Know”

Managing workflow

Serving data in production

Data Quality

Performance
17

17

People You May Know
Alice

Bob Carol

18

How do people
know each other?

18

People You May Know
Alice

Bob Carol

19

How do people
know each other?

19

People You May Know
Alice

Bob Carol

Triangle closing

20

How do people
know each other?

20

People You May Know
Alice

Bob Carol

Triangle closing
Prob(Bob knows Carol) ~ the # of common connections

21

How do people
know each other?

21

Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE
 generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE
 flatten(group) as (source_id, dest_id),
 COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

22
22

Pig Overview

Load: load data, specify format

Store: store data, specify format

Foreach, Generate: Projections, similar to select

Group by: group by column(s)

Join, Filter, Limit, Order, ...

User Defined Functions (UDFs)

23
23

Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE
 generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE
 flatten(group) as (source_id, dest_id),
 COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

24
24

Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE
 generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE
 flatten(group) as (source_id, dest_id),
 COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

25
25

Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE
 generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE
 flatten(group) as (source_id, dest_id),
 COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

26
26

Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE
 generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE
 flatten(group) as (source_id, dest_id),
 COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

27
27

Triangle Closing in Pig
-- connections in (source_id, dest_id) format in both directions
connections = LOAD `connections` USING PigStorage();
group_conn = GROUP connections BY source_id;
pairs = FOREACH group_conn GENERATE
 generatePair(connections.dest_id) as (id1, id2);

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn GENERATE
 flatten(group) as (source_id, dest_id),
 COUNT(pairs) as common_connections;
STORE common_conn INTO `common_conn` USING PigStorage();

28
28

Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A)
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

29

connections = LOAD `connections` USING
PigStorage();

29

Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A)
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

30

group_conn = GROUP connections BY
source_id;

30

Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A)
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

31

pairs = FOREACH group_conn GENERATE
generatePair(connections.dest_id) as (id1, id2);

31

Triangle Closing Example
Alice

Bob Carol

1.(A,B),(B,A),(A,C),(C,A)
2.(A,{B,C}),(B,{A}),(C,{A})
3.(A,{B,C}),(A,{C,B})
4.(B,C,1), (C,B,1)

32

common_conn = GROUP pairs BY (id1, id2);
common_conn = FOREACH common_conn
GENERATE flatten(group) as (source_id, dest_id),
COUNT(pairs) as common_connections;

32

Our Workflow

triangle-closing

33
33

Our Workflow

triangle-closing

top-n

34
34

Our Workflow

triangle-closing

top-n

push-to-prod

35
35

Outline
What do I mean by Data Products?

Systems and Tools we use

Let’s build “People You May Know”

Managing workflow

Serving data in production

Data Quality

Performance
36

36

Our Workflow

triangle-closing

top-n

push-to-prod

37
37

Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections

38
38

Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections

push-to-qa

39
39

PYMK Workflow

40
40

Workflow Requirements
Dependency management
Regular Scheduling
Monitoring
Diverse jobs: Java, Pig, Clojure
Configuration/Parameters
Resource control/locking
Restart/Stop/Retry
Visualization
History
Logs

41
41

Workflow Requirements
Dependency management
Regular Scheduling
Monitoring
Diverse jobs: Java, Pig, Clojure
Configuration/Parameters
Resource control/locking
Restart/Stop/Retry
Visualization
History
Logs

Azkaban

42
42

Sample Azkaban Job Spec

type=pig

pig.script=top-n.pig

dependencies=remove-connections

top.n.size=100

43
43

Azkaban Workflow

44
44

Azkaban Workflow

45
45

Azkaban Workflow

46
46

Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections

47
47

Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections

48
48

Outline
What do I mean by Data Products?

Systems and Tools we use

Let’s build “People You May Know”

Managing workflow

Serving data in production

Data Quality

Performance
49

49

Production Storage

Requirements

Large amount of data/Scalable

Quick lookup/low latency

Versioning and Rollback

Fault tolerance

Offline index building

50
50

Voldemort Storage

Large amount of data/Scalable

Quick lookup/low latency

Versioning and Rollback

Fault tolerance through replication

Read only

Offline index building

51
51

Data Cycle

52
52

Voldemort RO Store

53
53

Our Workflow
triangle-closing

top-n

push-to-prod

remove
connections

54
54

Outline
What do I mean by Data Products?

Systems and Tools we use

Let’s build “People You May Know”

Managing workflow

Serving data in production

Data Quality

Performance
55

55

Data Quality

Verification

QA store with viewer

Explain

Versioning/Rollback

Unit tests

56
56

Outline
What do I mean by Data Products?

Systems and Tools we use

Let’s build “People You May Know”

Managing workflow

Serving data in production

Data Quality

Performance
57

57

Performance

58
58

Performance

Symmetry

Bob knows Carol then Carol knows Bob

58
58

Performance

Symmetry

Bob knows Carol then Carol knows Bob

Limit

Ignore members with > k connections

58
58

Performance

Symmetry

Bob knows Carol then Carol knows Bob

Limit

Ignore members with > k connections

Sampling

Sample k-connections

58
58

Things Covered
What do I mean by Data Products?

Systems and Tools we use

Let’s build “People You May Know”

Managing workflow

Serving data in production

Data Quality

Performance
59

59

SNA Team

Thanks to SNA Team at LinkedIn

http://sna-projects.com

We are hiring!

60
60

http://sna-projects.com
http://sna-projects.com

Questions?

61
61

